A Class Number Relation Over Function Fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Class number approximation in cubic function fields

A central problem in number theory and algebraic geometry is the determination of the size of the group of rational points on the Jacobian of an algebraic curve over a finite field. This question also has applications to cryptography, since cryptographic systems based on algebraic curves generally require a Jacobian of non-smooth order in order to foil certain types of attacks. There a variety ...

متن کامل

Ternary quadratic forms over number fields with small class number

We enumerate all positive definite ternary quadratic forms over number fields with class number at most 2. This is done by constructing all definite quaternion orders of type number at most 2 over number fields. Finally, we list all definite quaternion orders of ideal class number 1 or 2.

متن کامل

Class Number Growth of a Family of Z -Extensions p over Global Function Fields

Let F be a finite field with q elements and of characteristic p. In this q paper, we construct a family of geometric Z -extensions over global p function field k of transcendence degree one over F and study the q asymptotic behavior of class numbers in such Z -extensions. By the analog p of the Brauer]Siegel theorem in function fields, it suffices to investigate w x the genus of each layer of s...

متن کامل

Number of Points of Function Fields over Finite Fields

Definition 1. The category Mot∼ is the Karoubian envelope (or idempotent completion) of the quotient of Mot ∼ by the ideal consisting of morphisms factoring through an object of the form M ⊗L, where L is the Lefschetz motive. This is a tensor additive category. If M ∈ Mot ∼ , we denote by M̄ its image in Mot∼. Lemma 1 ([6, Lemmas 5.3 and 5.4]). Let X, Y be two smooth projective irreducible k-var...

متن کامل

One class genera of ternary quadratic forms over number fields

We enumerate all one class genera of definite ternary quadratic forms over number fields. For this, we construct all Gorenstein orders of type number one in definite quaternion algebras over number fields. Finally, we list all definite quaternion orders of ideal class number one.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1995

ISSN: 0022-314X

DOI: 10.1006/jnth.1995.1122